scansione

L’effetto tunnel e le sue applicazioni: la nascita del microscopio a scansione a effetto tunnel (STM)

di Marco Piumetti

La natura degli atomi è molto diversa dal mondo che sperimentiamo quotidianamente.  Tutto ciò, vale a dire il comportamento di piccole particelle come gli atomi e gli elettroni, era già stato scoperto all’inizio del secolo scorso e descritto dalla meccanica quantistica.  Grazie ad essa, oggi sappiamo che l’atomo non può essere considerato come una sfera rigida e gli elettroni non ruotano intorno ad un centro.  In realtà, gli elettroni possono muoversi anche nello spazio esterno all’atomo, e questo è quello che si chiama effetto tunnel.
Il tunnelling quantistico (o effetto tunnel) venne postulato per la prima volta nel 1928 dal fisico ucraino George Gamow per spiegare il decadimento alfa, in cui una particella ⍺ (un nucleo di elio, 4He) viene emessa da un nucleo in quanto riesce a superarne la barriera di potenziale.

Nella meccanica classica la legge di conservazione dell’energia prevede che una particella possa superare un determinato ostacolo (o barriera di potenziale) soltanto se essa possiede un’energia sufficiente.  Ad esempio, per fare risalire una palla in cima ad una collina, e farla rotolare lungo il crinale opposto, sarà necessario imprimerle una velocità (e quindi fornirle un’energia cinetica) almeno pari all’energia potenziale del punto di massima altezza (E cinetica ≥ E potenziale). Continua...

come possiamo trasformare un profumo in una matrice numerica… e viceversa!

Un profumo, un olio essenziale, un frutto aromatico: quello che il nostro naso percepisce odorando un fiore o spesso anche semplicemente assaggiando un alimento, come molti sicuramente sanno, è solitamente un insieme di decine, per lo più centinaia di molecole diverse, in differenti rapporti quantitativi fra loro.
rosa L’approccio conoscitivo tipico per descrivere in modo univoco la complessità di un profumo, nonché per riuscire successivamente a riprodurlo, è quello di tradurre la sua composizione in una stringa numerica o meglio ancora una matrice bi- o tridimensionale.
Per fare questo dobbiamo utilizzare in primo luogo una tecnica di risoluzione che separi i singoli componenti (molecole) della miscela complessa (1° dimensione della matrice) e su ogni componente separato intervenire con una tecnica analitica che fornisca un responso coerente con la struttura della molecola separata (2° dimensione).

Mi spiego meglio.

Sui metodi di separazione a cui sto pensando, che vanno sotto il nome generico di “cromatografia”, si tengono interi corsi universitari, girano intere aziende di strumentazione scientifica ed esistono decine di riviste specializzate. Non me ne vogliano quindi gli esperti nel settore (io stesso utilizzo queste tecniche da circa 15 anni!) se in questa sede semplifico il tutto dicendo che la cromatografia è in ultima istanza un metodo per separare una miscela nei suoi componenti sulla base del tempo. Continua...

CERCA LA CHIMICA DI CUI HAI BISOGNO

Sostieni la divulgazione della Chimica

Il tuo libero contributo sarà interamente devoluto alle attività di divulgazione della Chimica.

RICHIEDI LA NEWSLETTER

Una mail settimanale con gli aggiornamenti delle pubblicazioni, le attività dell'Associazione e le novità del mondo della divulgazione chimica



SEGUI CHIMICARE ANCHE SU FACEBOOK

segui chimicare anche su facebook



ARTICOLI RECENTI

LA NOSTRA STORIA

SEGUI CHIMICARE ANCHE SU TWITTER

Non solo gli aggiornamenti degli articoli pubblicati sui nostri blog e le novità del Carnevale della Chimica, ma anche le segnalazioni dei migliori interventi di divulgazione chimica in lingua italiana nel web.



bannerone-bottom